LYCOPODIUM

Sub- Division- Lycopsida Order- Lycopodiales Family- Lycopodiaceae

LYCOPODIUM Distribution and Occurrence

- Commonly called:
 - Club moss
 - Ground pine
 - Trailing over green
- Represented by 400 species, worldwide in distribution
- In India, represented by 33 species
- Eg.- L.cernuum, L. clavatum, L.serratum,
 L.volubile, L. inundatum, L. phlegmaria, L. selago

Habit

- Found in open woodlands, in moist and acidic soils
- Epiphytic eg.- L. phlegmaria
- Erect and shrubby eg.- L. clavatum
- Creeping forms eg.- L. cernuum- Gives out erect branches at intervals
- Erect branches highly branched and bushy

Fig. 27.1. Lycopodium, A, cart of a plant of L. clavatum snowing streois; B-E. lost form and arrangement in Lycopodium, B. L. sefesceros; C. L. voluble; D. L. complanatum; E. L. connum.

Lycopodium clavatum

Lycopodium volubile

Lycopodium phlegmaria

Lycopodium serratum

Lycopodium inundatum

Lycopodium cernuum

Stem- Dichotomously branched- branches grow equally or unequally

LYCOPODIUM External Morphology

- Plant body is the sporophyte
- Differentiated into root, stem and leaves
- Considering the variation in habit of different species, Pritzel (1900) divided the genus Lycopodium into two sub-genera:
 - Urostachya
 - Rhopalostachya

LYCOPODIUM

UROSTACHYA

- Erect or pendant stem
- Stem-Dichotomously branched
- Roots arise only from base of stem
- Leaves and sporophylls almost same size
- Vegetative reproduction by bulbils
- Eg. L. compactum, L. selago, L. phlegmaria

RHOPALOSTACHYA

- Prostrate stem with upright branches
- Dichotomy noticed in first formed branches; later monopodial
- Adventitious roots along entire length of stem
- Sporophylls smaller than foliage leaves
- Sporophylls arranged to form cones or strobili
- Eg. L. cernuum, L. clavatum, L. densum

LYCOPODIUM

Root:

 First formed root is ephemeral. Older plants have adventitious roots; they arise from the pericycle or endodermis

• Stem:

- Weak, slender and rhizomatous
- Erect or pendant; creeping in others
- Branched- basically dichotomous; sometimes monopodial
- Stem and branches covered with leaves

LYCOPODIUM Leaf

- Simple, sessile, scale like or small with median vein- Microphylls
- Spirally arranged and dense on stem
- Decussate or whorled arrangement

LYCOPODIUM Leaf

Isophyllous

All leaves are of the same type

Anisophyllous

- Different types of leaves
- In L. volubile, 4 rows of leaves
 - 2 lateral rows of large and falcate leaves
 - 1 ventral row of small hair-like leaves
 - 1 dorsal row of medium sized acicular leaves

ANATOMY OF ROOT

- Cross section shows three distinct regions:
 - Epidermis- single layered, thin walled cells; sometimes with unicellular hairs
 - Cortex- Composed of parenchymatous cells; older roots have thick walled cells for mechanical support
 - Stele- Protostele; monarch (one protoxylem), diarch (two protoxylem) or triarch (three protoxylem)
 - Xylem is curved and phloem lies in between the arms of xylem

Fig. 230. Lycopodium T.S. aeriai root

Anatomy of Stem

Three zones:

- Epidermis: Protective layer; cells with thick outer wall with cuticle
- Cortex: Nature varies with species and stem diameter
 - Homogenous: Cortex is entirely parenchymatous
 - Heterogenous: Three zones: outer chlorenchymatous, middle parenchymatous and inner sclerenchymatous
- Endodermis distinct in young stems
- Stele: Protostele

STELE

- Has only primary xylem and primary phloem
- Stele is a protostele- there is no pith at the centre
- Xylem forms the central core surrounded by phloem
- Xylem is exarch
- 3 types of protostele
 - Actinostele- Xylem Star shaped, phloem between arms of xylem (*L. selago*, *L.serratum*)
 - Plectostele- Xylem in the form of plates
 (L. clavatum, L. companulatum)
 - Mixed protostele- Xylem and phloem uniformly distributed in T.S. (*L. cernuum*)

Anatomy of Leaf

- Leaf is triangular in outline
- Outer epidermis covered by a thick cuticle
- Stomata are present on both surfaces- amphistomatous
- In L. companulatum and L. volubile, stomata are hypostomatousconfined to lower surface
- Mesophyll is undifferentiated; made of chlorophyllous cells
- A median concentric vascular bundle with xylem surrounded by phloem

Fig. 27.5. Lycopodium clavatum. Transverse section of leaf.

REPRODUCTION

Vegetative Reproduction

- Gemmae or Bulbils
- Fragmentation
- Formation of Resting Buds
- Formation of Root tubercles
- Formation of Adventitious Buds

By Spores

Homosporous condition

Vegetative Reproduction

- Gemmae or Bulbils
 - Lateral outgrowths from the stem, takes the place of leaves
 - Consists of a short reduced axis surrounded by thick fleshy leaves with stored food material
 - Falls on the ground and grows into a new plant

Vegetative Reproduction

Fragmentation

 Death and decay of older parts of the stem leads to separation of younger branches which grow into new plants

Formation of resting buds

 Tips of apical buds of rhizome and branches store food material and is surrounded by a bunch of leaves. In winter, rest of the plant dies and the resting bud develops into new plants.

Vegetative Reproduction

- Formation of root tubercles
 - Group of cells with stored food material and protected by thick walls- germinates into new plants
 - Formation of Adventitious Buds
 - In the leaves epidermal cells proliferate near the base and grow into buds. These buds are capable of germinating into new plants.

Strobilus in Lycopodium

- In Urostachya, every leaf on the plant is a sporophyll
- In Rhopalostachya, the leaves near the apices bear sporangia and are called sporophylls
- Sometimes sporophylls are distinctly smaller than the foliage leaves
- Aggregation of sporophylls is called strobilus
- A strobilus has a central axis on which spirally arranged sporophylls are present

Position of Sporangium on Sporophyll

- Axillary in position
 - L. selago, L. phlegmaria
- On the dorsal side of the sporophyllepiphyllous
 - L. cernuum, L. clavatum
- Sub-foliar, not on the sporophyll but a little towards the sporophyll
 - L. squarrosum

Lycopodium - Strobilus, Sporophylls and Sporangia

Upper (adaxial) side of sporophyll

Structure of Sporangium

- Reniform or Kidney shaped
- Has a stalk and a capsule
- Capsule is unilocular
- Sporangial wall is three layered
- Innermost layer is the tapetum
- Inside sporogenous mother cells undergoes meiosis and produce tetrads of spores
- Sporangia are homosporous

Structure of the Spore

- Lycopodium is homosporous
- Occur in tetrads
- Tetrahedral in shape with rounded or semicircular base
- Unicellular and range in size from 0.03-0.05mm diam.
- Has a triradiate ridge, 2 layers of cell wall
- Spore wall may be smooth or variously sculptured
- Has a single haploid nucleus
- Cytoplasm filled with reserve food material

Dehiscence of Sporangium

- Elongation of the internodes of strobilus
- Sporophylls spread out exposing sporangia
- A line of cells are differentiated on the sporangial wall called stomium
- Inner walls of cells of stomium are thick and lignified
- Exposed sporangia lose water and dry
- Split appears in the stomium and sporangia open into two valves
- Air disseminates the spores

Germination of the Spore

- Time taken for germination varies from a few days to several years after their liberation from the sporangium
- Quickly germinating spores produce aerial short lived and green prothalli
 - L. cernuum, L. inundatum
- When spores take longer time to germinate, they get buried under the soil and produce colourless subterranean prothalli that are large, tuberous and long lived

Germination of the Spore

- The spore germinates to produce the gametophyte
- The gametophyte is called the prothallus
- It produces the antheridia and archegonia
- It is free living independent of the sporophyte
- 2 regions- lower region attaches to the soil
- Upper region- Generative zone containing antheridia and archegonia

Gametophyte

- Three types of Prothalli are present in Lycopodium
 - Cernuum Type
 - Clavatum Type
 - Phlegmaria Type

CERNUUM TYPE

- L. cernuum, L. inundatum
- Erect cylindrical body, 2-3 mm long
- Grows on the surface of the ground
- Colourless basal portion buried in the soil
- Lobed generative zone-green and bearing sex organs at the base of the lobes
- Rhizoids restricted to lower buried portion
- Endophytic fungus is present in the basal portion
- Meristematic tissue present as a rim around upper part
- Prothallus is independent and prepares its own food

CLAVATUM TYPE

- Spore germination is delayed for a long time (one to many years), thus the prothallus has a longer lifespan.
- Here the prothalli are fleshy, non-green, totally saprophytic and completely subterranean and perennial in nature.
- Development takes place beneath the surface of the ground or within a layer of humus.
- The prothalli are large and may be up to 2 centimeters in length. They may be top-shaped with a convolute margin or carrot shaped
- The top of the prothallus are lobed and the sex organs and the growing embryos are located on these lobes.
- All the gametophytic cells are parenchymatous

Second type of Prothallus

Longitudinal section of subterranean gametophyte of *Lycopodium clavatum*

PHLEGMARIA TYPE

- The pro-thalli are aerial but saprophytic in nature, grow on tree trunks below a coating of humus.
- This type is found in epiphytic species of Lycopodium (e.g., L. phlegmaria).
- Here the spore germination is immediate and the gametophyte grows for only one season.
- The prothallus consists of a short, tuberous cen-tral part from which a number of colourless, slender and cylindrical branches develop in an irregular fashion.
- These branches bear sex organs and they are usually surrounded by glandular hairs called paraphysis.

Gametophyte of *L.* inundatum

Subterranean gametophyte of L. annotinum

Longitudinal section of subterranean gametophyte of *Lycopodium clavatum*

Gametophyte diversity in *Lycopodium* spp.

Longitudinal section of subterranean gametophyte of *Lycopodium* complanatum

Vegetative Reproduction of the Prothallus

- By formation of gemmae
 - Borne on branches of prothallus
 - Singly or in clusters
 - Thick walled and stores food materials
 - Capable of perennation
- By progressive death and decay of older parts
- Adventitious buds arise from injured parts of the lobes

PROTHALLI

 Prothalli are monoecious- male antheridia and female archegonia are borne on the same thallus

ANTHERIDIUM

- Usually sunken in the prothallus; position visible by a small bulge
- Has a single layered jacket; an operculum cell
- As water enters, jacket rupture and biflagellate antherozoids are liberated

alopment of antheridium. A E, successive stages in the early antheridium with androcytes; G, androcytes and mature biciliate antherozoids.

PROTHALLI

ARCHEGONIA

- Flask shaped, having basal venter and a neck
- Has 4-8 neck canal cells
- Venter has a venter canal cell and an egg cell

Fig. 27.21. Lycopodium. Development of archegonium. A, division of archegonial initial into primary neck cell and inner cell; B, vertical division of primary neck cell and transverse division of inner cell forming basal and central cells; C, central cell divides to form primary canal cell, and primary ventral cell; D-E, later stages showing basal cell, primary ventral cell and four neck canal cells; F, nearly mature archegonium with egg, ventral canal cell and neck canal cells; G, mature archegonium with egg and open neck canal.

FERTILIZATION

- When archegonium matures, tip of neck cells split, neck canal cells and venter canal cell disintegrate and form a mucilaginous substance
- Antherozoids enter the archegonium and one fuses with the egg to form the oospore
- The diploid oospore germinates and produces the sporophytic generation

CICLO DE L'A OPORRA CE L'ATTAT (L'expendiales, Lycopodiophyte)
DISENETICO HETEROMORFICO CON ESPOROFITO BOMINANTE, TIPLOHAPLOFÁSICO
ORGANISMO DIPLOBIBNEICO è IBOSPÒREO

